

Single Electricity Market Operator – Training Module

Market Processes: Bid to Bill

July 2007 (Revision 6)

COPYRIGHT NOTICE

All rights reserved. This entire publication is subject to the laws of copyright. This publication may not be reproduced or transmitted in any form or by any means, electronic or manual, including photocopying without the prior written permission of <u>EirGrid plc and SONI Limited.</u>

DOCUMENT DISCLAIMER

Every care and precaution is taken to ensure the accuracy of the information provided herein but such information is provided without warranties express, implied or otherwise howsoever arising and EirGrid plc and SONI Limited to the fullest extent permitted by law shall not be liable for any inaccuracies, errors, omissions or misleading information contained herein.

Learning objectives for this module:

ØAn overview of the bidding process

ØA simple example of how the ex-ante and ex-post UUC work

ØAn explanation of the key differences between ex-ante and expost scheduling

ØAn example of the settlement outcomes

Note: Please review the separate handout for reference data and definitions

A. BID SECTION

B. SETTLEMENT SECTION

A. BID SECTION

1. Setting the Scene

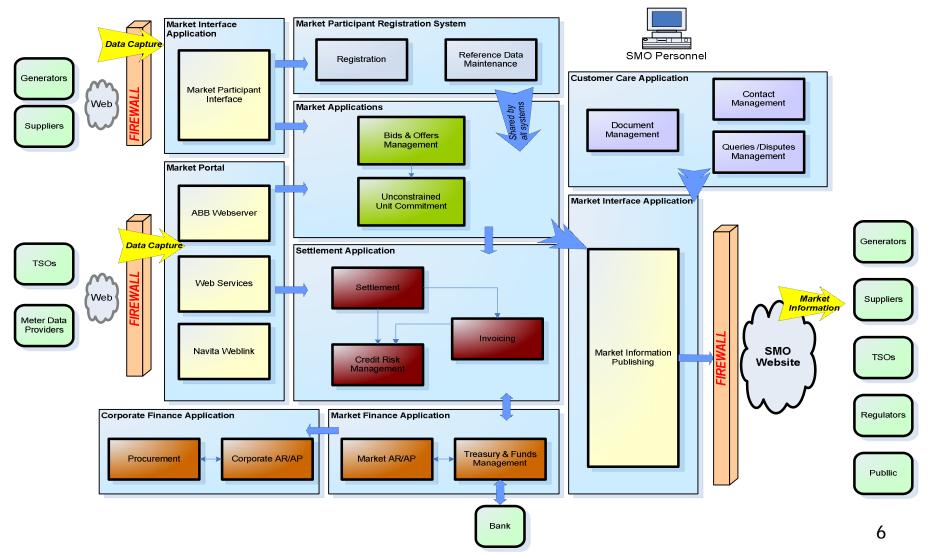
2. Bids

3. Ex Ante Generation Requirement

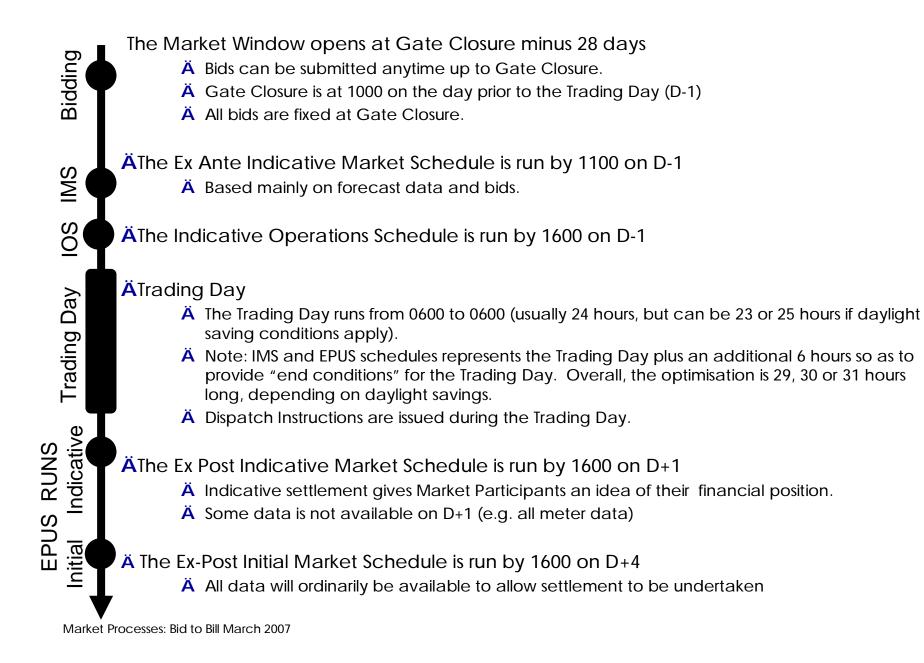
4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

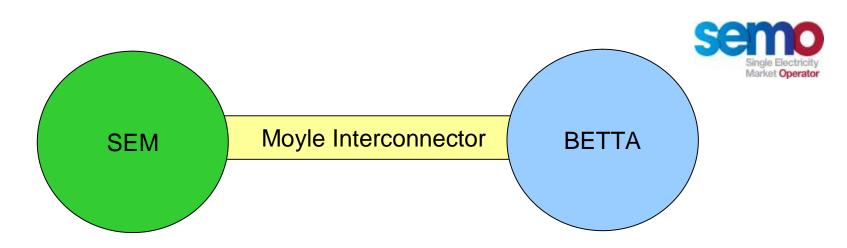
6. Meter Data


7. Ex Post Processing of Bids

8. Ex Post Generation Requirement


9. Ex Post UUC Solution

B. SETTLEMENT SECTION



Ä In the following example registration data and standing bids are ignored.

- Ä Standing bid data is bid data defined for a given weekday which is used for that day if no bid has been submitted.
- Ä Standing bid data becomes "live" at the time of gate opening (28 days before gate closure)
- A If a Market Participant wants or needs to change bid data after that time then it must replace the data within the bidding systems using the normal bid process.

ÄRegistration data can generally be submitted up to gate closure.

Ä There are a few exceptions to this for data that is used in other processes

During previous months

- Ä Interconnector Administrator periodically allocates capacity to Interconnector Users based on an auction.
- Ä During Window for Bidding
 - Ä Interconnector Users can bid like any other participant, but may not have certainty over their final capacity holdings.
- Ä Day D-2
 - Ä Interconnector Administrator determines the Active Import Capacity Holdings and Active Export Capacity Holders for each Interconnector User for Trading Day D.
 - Ä SMO (Single Market Operator) publishes capacity
- Ä Day D-1
 - Ä The ex ante IMS only uses only bids within the Active Import/Export Capacity Holdings
 - Ä The ex ante IMS run determines the total flow on the interconnector
 - Ä If the I/C is ramp constrained, the MITS system allocates total scheduled flow between interconnector users based on their right holdings

The Ex-Ante IMS is produced following Gate Closure. It is based on:

- Participant Bids for Price Maker Units (within the Window)
- Unit forecast availabilities, minimum stable generation and minimum output
- Price Taker Nominations
- Composite Load Forecast (comprised of forecasts from ROI and NI)
- Wind Unit forecasts

The Ex-Post EPUS is run after the Trading Day (indicative on D+1 and initial on D+4). It is based mainly on actual data from the Trading Day, including:

•The same Participant Bids

•Actual availabilities, minimum stable generation and minimum output

Actual generation (metered output)

Bidding

IMS

Trading Day

D+1

EP D+4,

Highlight the bidding and scheduling process with a numeric example

Ä More detail on the formal workings of systems in other presentations

Ä The example serves to illustrate the concepts while avoiding the specifics

- Ä Only 3 half-hour periods are considered
- **Ä** Focus only on bids, availability, energy limits and the demand to be met. There are many other parameters available to participants.
- Ä Pump storage units are covered in a stand-alone example
- Ä Transmission loss factors are assumed to be 1
 - Ä No impact on the scheduling examples as transmission loss factors are not used
 - Ä But does simplify the settlement examples.

Ä The example follows a mixture of price makers and price takers through the bidding, scheduling and settlement process.

Ä A Price Maker is a generating unit that is scheduled in IMS/EPUS and which can set prices.

Ä A Price Taker is a self scheduled generating unit that cannot set prices.

"Predictable Price Maker"

Unit 1 Thermal Generator (e.g. gas or coal fired)

Unit 2 Hydro Generator (water powered)

While generation is controllable, Unit 2 has very limited storage so its ability to generate depends on water availability. It is a "Variable Price Maker" (and is also an Energy Limited Generator Unit)

Units 3a and 3b Interconnector Units (e.g. imported/exported energy)

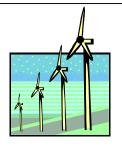
This unit has a fully controllable output and

can be scheduled based on bids. Unit 1 is a

Two participants in BETTA can buy or sell across the Moyle Interconnector. One trader has Unit 3a, the other Unit 3b. These units are obliged to supply or consume so are "Predictable Price Makers".

Unit 4 Demand Side Unit (e.g. curtailable load)

Demand side units are treated as being fully controllable and can be scheduled based on bids. Unit 4 is a "Predictable Price Maker"


Unit 5 Thermal Generator (e.g. gas or coal fired)

This unit is a co-generator, producing power as a by-product of another process, & while its output is predictable its operator does not want to have to change its output based on price. Unit 5 is a "Predictable Price Taker"

Unit 6 Thermal Generator (e.g gas or coal fired)

This unit is a smaller co-generator, with less predictable output. It can be thought of as a "Variable Price Taker", but the term used for Unit 6 is that it is a "Variable Price Taker" (non-wind powered)

Unit 7 Wind Unit (e.g. wind unit, wind farm)

Unit 8 Wind Unit (e.g. wind unit, wind farm)

Unit 7 is a wind farm and as such cannot predict its output. Unit 7 is a "Variable Price Taker" (wind powered) Unit 8 is an individual wind unit that only wants to have limited involvement in the market. Unit 8 is an "Autonomous Generator".

Unit	Туре	Nature	How Scheduled
1	Thermal	Predictable Price Maker	Bids
2	Hydro	Variable Price Maker (Energy Limited)	Bids
3a	Interconnector Unit	Predictable Price Maker	Bids
3b	Interconnector Unit	Predictable Price Maker	Bids
4	Demand Side Unit	Predictable Price Maker	Bids
5	Thermal	Predictable Price Taker	Nomination
6	Thermal	Variable Price Taker (non-wind)	Nomination
7	Wind	Variable Price Taker (wind)	Forecast
8	Wind	Autonomous Generator	Forecast

Market Processes: Bid to Bill March 2007

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

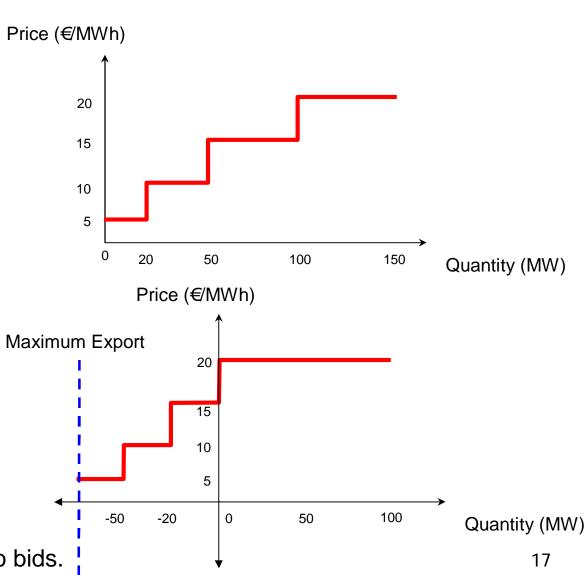
Price (€/MWh)	Quantity (MW)	
5	20	
10	50	
15	100	
20	150	

Ä Price / Quantity Pairs

- Ä The Quantity represents the average MW level of energy to be supplied over a trading period.
- Ä The price represents the minimum payment required for each MWh delivered.
 - Ä Price must increase with increasing quantity.
- Ä This bid corresponds to
 - Ä Offering up to 20 MW for €5/MWh
 - Ä Offering from 20 MW to 50 MW for €10/MWh
 - Ä Offering from 50 MW to 100 MW for €15/MWh
 - Ä Offering from 100 MW to 150 MW for €20/MWh

ÄUsage

- Ä Interconnector Units can submit up to 10 PQ pairs for each Trading Period in the Trading Day
- Ä Generators and Demand Side Units can submit 10 PQ pairs which apply for all Trading Periods in the Trading Day.


For a Generator or DSU

Price (€/MWh)	Quantity (MW)
5	20
10	50
15	100
20	150

For an Interconnector Unit

Price (€/MWh)	Quantity (MW)
5	-50
10	-20
15	0
20	100

Pump storage units have no bids.

Market Processes: Bid to Bill March 2007

UNIT 1 DATA

Start-up Cost per start (€) 1			1,000		No	<mark>r)</mark> 50	50		
Price	Quantity	Trading Period					1	2	3
<mark>(€/MWh)</mark>	(MW)	Forec	Forecast Availability (MW)					250	200
10	100	Forec	Forecast Min Stable Generation (MW)					50	50
20	200	Forec	Forecast Min Output (MW)				0	0	0
30	300	Enera	Energy Limit (MWh) N/A Periods					N/A	N/A

- Ä Each time Unit 1 is turned on a cost of €1000 will be incurred.
- Ä Each hour it is on, Unit 1 incurs a no load cost of €50 irrespective of its output.
- Ä When committed, Unit 1 operates at not less than its minimum stable generation of 50 MW.
- Ä Unit 1 has 250 MW of capacity available in periods 1 and 2, but due to maintenance its capacity drops to 200 MW in period 3.
- Ä Minimum output is zero for all Generator Units except for Pump Storage Units.
- Ä No energy limits apply (only energy limited hydro units may use these).

THIS PARTICIPANT DATA

Start-up Cost per start (€) 1,000			1,000		No Load Cost (€/hour) 50				
Price	Quantity	Trading Period					1	2	3
(€/MWh)	(€/MWh) (MW)		Forecast Availability (MW)					250	200
10	100	Forec	ast Min Stab	e G	eneratio	n (MW)	50	50	50
20	200	Forec	Forecast Min Output (MW)					0	0
30	300								
		Energ	y Limit (IVIVVn)	N/A	Periods	N/A	N/A	N/A

IMPLIES THIS UUC INPUT

Peri	Period 1		iod 2	Period 3			
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity		
Any*	50	Any*	50	Any *	50		
10	50	10	50	10	50		
20	100	20	100	20	100		
30	50	30	50				

Start-up Cost per start (€) 1,000

No Load Cost (€/period)

Energy Limit (MWh)

N/A

25

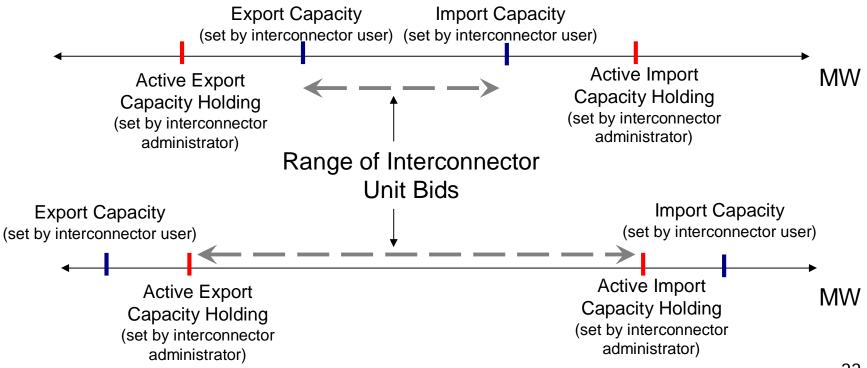
* In all our examples, "Any" means the quantity applies at any price provided that the unit is committed. Market Processes: Bid to Bill March 2007

UNIT 2 DATA

Start-up Cost per start (€)			0		No Load Cost (€/hour) 0					
Price	Quantity	Tradir	Trading Period					2	3	
(€/MWh)	(MW)	Forecast Availability (MW)					200	200	200	
10	50	Forec	ast Min Stab	e G	eneratio	on (MW)	60	60	60	
20	100	Forec	Forecast Min Output (MW)				0	0	0	
25	200	Energ	Energy Limit (MWh) 120 Periods					ü	ü	

- Ä This unit happens to have start-up and no-load costs of zero.
- Ä When committed, Unit 2 operates at not less than its minimum stable generation of 60 MW.
- Ä Unit 2 has 200 MW of capacity available in all periods. This equates to 100 MWh per half hour period or 300 MWh of potential energy over the three periods.
- Ä But unit 2 has an energy limit of 120 MWh so will not be scheduled for more than this over the three periods.
- Ä If committed, the generation output of Unit 2 above Min Stable Generation is based on the submitted PQ pairs.

THIS PARTICIPANT DATA


Start-up Cost per start (€)			0		No Load Cost (€/hour) 0				
Price	Quantity	Tradir	Trading Period					2	3
(€/MWh)	(MW)	Forec	Forecast Availability (MW)					200	200
10	50	Forec	ast Min Stab	le G	eneratio	on (MW)	60	60	60
20	100	Forec	Forecast Min Output (MW)				0	0	0
25	200	Energ	Energy Limit (MWh) 120 Periods					ü	ü

IMPLIES THIS UUC INPUT

	Peri	od 1	Per	iod 2	Period 3				
	Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity			
	Any	60	Any	60	Any	60			
	20	40	20	40	20	40			
	25	100	25	100	25	100			
	Energy Lin	nited Period	Energy Lir	nited Period	Energy Limited Period				
Start	-up Cost per st	t <mark>art (€)</mark> 0	No Load C	ost (€/period)	0 Energy	Limit (MWh) 12			

- Ä Interconnector unit bids apply between the Export and Import Capacity set by the interconnector user.
- Ä BUT, where this capacity violates the participants the active import or export capacity holdings, the active export or import capacity holding is used (as applicable)

INTERCONNECTOR USER DATA

Period 1	Price (€/MWh)	Quantity (MW)	Period 2	Price (€/MWh)	Quantity (MW)	Period 3		Price /MWh)	Quar (M	
	5	-20		5	-20			5	-2	0
	40	20		40	20		40		20	C
	50	40		50	40			50	4(C
	Trading Pe	eriod					1	2	3	
	Min(Impo	rt Capacity, <i>I</i>	VIW)	0	40	0				
	Max(Expo	ort Capacity,	MW)	0	-40	0				

- Ä This interconnector unit will be treated like a generator with a zero start up cost and no-load cost.
- Ä Negative quantities are exports.
- Ä The interconnector user submits its desired import and export capacity, but the capacity range used is limited by the active import and export capacity holdings.
- Ä Unit 3a has no import or export capacity in periods 1 and 3.

THIS INTERCONNECTOR USER DATA

Period 1	Price (€/MWh)	Quantity (MW)	Period 2	Price (€/MWh)	Quantity (MW)	Period 3		Price /MWh)	Qua (M	<u> </u>
	5	-20		5	-20			5	-2	20
	40	20		40	20		40		2	0
	50	40		50	40			50 40		0
	Trading Pe		1	2	3					
	Min(Impo	rt Capacity, <i>I</i>	VIW)	0	40	0				
	Max(Expc	ort Capacity,	MW)	0	-40	0				

IMPLIES THIS UUC INPUT

Per	Period 1		iod 2	Period 3		
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity	
0	0	Any	-40	0	0	
		5	20			
		40	40			
		50	20		24	

Market Processes: Bid to Bill March 2007

INTERCONNECTOR USER DATA

Period 1	Price (€/MWh)	Quantity (MW)	Period 2	Price (€/MWh)	Quantity (MW)	Period 3		Price /MWh)	Qua (M	<u> </u>
	55	0		55	0			55	0)
	65	60		65	60			65	6	0
	Trading Pe	eriod					1	2	3	
	Min(Import Capacity, Active Import Capacity Holding) (MW)							60	0	
	Max(Expo	ort Capacity,	MW)	0	-60	0				

- Ä This interconnector unit will be treated like a generator with a zero start up cost and no-load cost.
- Ä This interconnector unit is bidding a positive price for quantities below zero (exports), meaning it is prepared to pay to purchase energy to export.
- Ä The interconnector user submits its desired import and export capacity, but the capacity range used is limited by the active import and export capacity holdings.
- Ä Unit 3b has no import or export capacity in periods 1 and 3.

THIS INTERCONNECTOR USER DATA

Period 1	Price (€/MWh)	Quantity (MW)	Period 2	Price (€/MWh)	Quantity (MW)	Period 3		Price /MWh)	Qua (M	<u> </u>
	55	0		55	0			55	C)
	65	60		65	60			65	6	0
	Trading Period								3	
	Min(Import Capacity, Active Import Capacity Holding) (MW)							60	0	
	Max(Expo	ort Capacity,	Active Expo	ort Capacity	y Holding) (MW)	0	-60	0	

IMPLIES THIS UUC INPUT

Per	Period 1		riod 2	Period 3			
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity		
0	0	Any	-60	0	0		
		55	60				
		65	60				
					26		

Market Processes: Bid to Bill March 2007

UNIT 4 DATA

Shut Down	Shut Down Cost per stop (€) 500 No Load Cost						t (€/hou	r) N/A	
Price						1	2	3	
(€/MWh)	(MW)	Forec	Forecast Availability (MW)				100	100	100
120	100	Forec	ast Min Stabl	e G	eneratio	n (MW)	0	0	0
		Forec	Forecast Min Output (MW)				0	0	0
		Energ	Energy Limit (MWh) N/A Periods				N/A	N/A	N/A

- Ä If the price reaches €120/MWh then Unit 4 will reduce its load by up to 100 MW.
- Ä A shut down cost of €500 will be incurred in the first of each contiguous group of periods where the Demand Side Unit supplies load reduction.
- Ä Unit 4 has availability in all periods.
- Ä Unit 4 has no energy limits (only hydro units can have these)
- Ä When this data is converted into the form used in the UUC the unit will be modelled as a generator with a start-up cost and a zero no load cost.

THIS PARTICIPANT DATA

Shut Down	Shut Down Cost per stop (€)500No Load Cost					(€/hou	r) N/A		
Price Quantity Trading Period							1	2	3
(€/MWh)	(MW)	Forec	Forecast Availability (MW)				100	100	100
120	100	Forec	Forecast Min Stable Generation (MW)				0	0	0
		Forec	Forecast Min Output (MW)			0	0	0	
		Energ	Energy Limit (MWh) N/A Periods				N/A	N/A	N/A

IMPLIES THIS UUC INPUT

Per	iod 1	Per	iod 2	Period 3		
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity	
120	100	120	100	120	100	

	Start-up Cost per start (€)	500	No Load Cost (€/period)	0	Energy Limit (MWh)	N/A
--	-----------------------------	-----	-------------------------	---	--------------------	-----

Ä In the above data both Units 1 and 2 have bid steps priced at €20/MWh

- Ä How these units are treated depends on their Priority Dispatch status.
- Ä We assume Unit 1 has priority dispatch and Unit 2 does not.

ÄThe costs of these units are modified:

- Ä Priority Dispatch units have their tied bid prices reduced fractionally by a small random amount.
 - Ä E.g. Unit 1's €20/MWh price changes to €19.999/MWh.
 - Ä If this sets the price, the price will be reported as €20.00/MWh
- Ä Non-Priority Dispatch units have their tied bid prices increased fractionally by a small random amount.

Ä E.g. Unit 2's €20/MWh price changes to €20.001/MWh.

- Ä If this sets the price, the price will be reported as €20.00/MWh
- Ä This ensures that in the event of tied bids.
 - Ä Priority Dispatch units are scheduled ahead of non-priority dispatch units.
 - Ä But within each group (priority dispatch, non-priority dispatch) ties are resolved randomly.

UNIT 1 DATA WITH PRIORITY DISPATCH

Peri	od 1	Per	iod 2	Period 3		
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity	
Any	50	Any	50	Any	50	
10	50	10	50	10	50	
19.999	100	19.999	100	19.999	100	
30	50	30	50			

Start-up Cost per start (€) 1,000

No Load Cost (€/period)

25

Energy Limit (MWh) N/A

UNIT 2 DATA WITHOUT PRIORITY DISPATCH

	Peri	od 1	Per	iod 2	Period 3			
	Price Inc Quantity		Price Inc Quantity Price Inc Quantity Pr		Price	Inc Quantity		
	Any	60	Any	60	Any	60		
	20.001	40	20.001	40	20.001	40		
	25	100	25	100	25	100		
	Energy Lin	nited Period	Energy Lir	nited Period	Energy Limited Period			
Market Proc	Start-up Cost (€)	per start 0	No	Load Cost 0 (€/period)	Energy Lir (MWh)	mit 120 30		

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

Ex-Ante Generation Requirement:

Composite TSO Demand Forecast (Demand + Transmission Losses – Non-Wind Autonomous Generation) Minus Price Taker Nominations (non-wind)

Minus TSO Wind Generation Forecast

Ex Ante Generation Requirement

(To be supplied by Price Maker Generator Units)

	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
Composite TSO Load Forecasts	311	368	428
Less			
Unit 5 (predictable price taker nomination)	15	15	15
Unit 6 (variable price taker nomination – non-wind)	8	5	5
Unit 7 (variable price-taker forecast - wind)	2	2	2
Unit 8 (autonomous generator forecast - wind)	6	6	6
Total Price Taker Nominations & Wind Unit Forecasts	31	28	28
Ex-Ante Generation Requirement to be met by Price Makers	280	340	400

A. BID SECTION

- 1. Setting the Scene
- 2. Bids
- 3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

- 5. Interconnectors & Dispatch Schedules
- 6. Meter Data
- 7. Ex Post Processing of Bids
- 8. Ex Post Generation Requirement
- 9. Ex Post UUC Solution

B. SETTLEMENT SECTION

The real problem involves solving a Unit Commitment

Ä Not just a question of determining an optimal schedule given a "merit order" (or list of bids in order of increasing price), but a problem of determining the optimal cost mix of generators, interconnector units and demand side units to consider in forming the merit order given there are costs of starting these units and keeping them available.

ÄTo keep it simple we assume:

- Ä Units 1 and 2 are committed for all three periods and incur any associated start up costs.
- Ä Units 3a and 3b are committed for the one period (Period 2) they are available they have no start up or no load costs.
- Ä Only Unit 4's commitment is determined in this example. This is an easier problem given everything else is committed and Unit 4 has the highest bid price we will only commit Unit 4 if we have no other supply options.

ÄRemember Unit 2 is energy limited to 120 MWh

- Ä It is committed & has a minimum stable generation of 60 MW, meaning it must generate 30 MWh per period.
- Ä Over three periods its minimum stable generation accounts for 90 MWh.
- Ä It only has 30 MWh available to be scheduled above minimum load.
- Ä We will see that the price in period 3 is the highest & all 30 MWh is scheduled then.
- Ä Hence seemingly cheap Unit 2 bids are not scheduled in Periods 1 and 2.

- Ä Generation Requirement = 280MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä The interconnector units have no availability for this period.
- Ä Unit 1's €10 & priority dispatch adjusted €20 bids scheduled next.
- Ä We need 20 MW more to cover the demand.
- Ä Unit 2 has the next cheapest bids, but Unit 2 is energy limited and makes more money in period 3.
- Ä Hence Unit 1's €30 bid supplies the last 20 MW & sets the shadow price.
- Ä Unit 4 is too expensive and is not needed.
 - Ä Shadow Price is €30/MWh

Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ
1	Any	50	50	50
2	Any	60	60	110
1	10	50	50	160
1	19.999	100	100	260
2	20.001	40	0	260
2	25	100	0	260
<u>1</u>	<u>30</u>	<u>50</u>	<u>20</u>	<u>280</u>
4	120	100	0	280
		TOTAL	280	

- Ä Generation Requirement = 340MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä Units 3a and 3b are assumed to be committed so will provide their maximum export at any price (-40 MW and -60 MW)
- Ä We continue up the merit order skipping Unit 2 again because of its energy limit.
- Ä Units 1 and 3a are scheduled to capacity while Unit 3b has 50 MW scheduled beyond its maximum export implying a net flow of -10 MW
- Ä Unit 4 is too expensive and is not needed.
 - Ä Shadow Price is €55/MWh

[]				· · · · · · · · · · · · · · · · · · ·	
Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ	
1	Any	50	50	50	
2	Any	60	60	110	
3a	Any	-40	-40	70	
3b	Any	-60	-60	10	
3a	5	20	20	30	
1	10	50	50	80	
1	19.999	100	100	180	
2	20.001	40	0	180	
2	25	100	0	180	
1	30	50	50	230	
3a	40	40	40	270	
3a	50	20	20	290	
<u>3b</u>	<u>55</u>	<u>60</u>	<u>50</u>	<u>340</u>	
3b	65	60	0	340	
4	120	100	0	340 ³⁷ 340	
	TOTAL				

- Ä Generation Requirement = 400MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä The interconnector units have no availability for this period.
- Ä Unit 1's €10 & priority dispatch adjusted€20 bids scheduled next.
- Ä Unit 2 provides all its 30 MWh of available energy in this period by supplying 60 MW for 30 minutes.
- Ä We still need to cover 80 MW of load, so must commit Unit 4, incurring its start-up cost of €500. The bid price of Unit 4 sets the price in this period.

Ä Shadow Price is €120/MWh

	Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ
١	1	Any	50	50	50
	2	Any	60	60	110
	1	10	50	50	160
	1	19.999	100	100	260
	2	20.001	40	40	300
	2	25	100	20	320
	<u>4</u>	<u>120</u>	<u>100</u>	<u>80</u>	<u>400</u>
			TOTAL	400	

Period	1	2	3
Shadow Price (€/MWh)	30	55	120

Unit	Period 1 MSQ (MW)	Period 2 MSQ (MW)	Period 3 MSQ (MW)
1	220	250	200
2	60	60	120
3a	0	40	0
3b	0	-10	0
4	0	0	80

The IMS and EPUS do not incorporate start-up, shut-down or no-load costs into the shadow price calculation.

- Ä The shadow price only reflects the cost of supplying an infinitesimal change in demand.
- Ä As a result, situations can arise where Units do not recover their "full" costs over a continuous period of running.
- Ä An SMP price is defined which
 - Ä Cannot be less than the shadow price
 - Ä Aims to recover the bid related costs, the no load cost and a proportion of the start-up costs over the period the unit runs.
 - Ä Cannot guarantee this in all circumstances, e.g
 - Ä if to recover all costs would imply an SMP price above the market price cap.
 - Ä if the unit carries on operating into the next day then only some of its start-up costs will be apportioned to the current day.
- Ä An SMP price each trading period in the trading day is determined as part of each run of the UUC software
- Ä The following slides illustrates the concept, showing
 - Ä a Unit that recovers its costs based on the shadow price.
 - Ä a Unit that can only recover its costs if a higher SMP is set

Period 1 2 3 Status ON ON ON No load 25 25 25 Schedule Quantities (MSQ) in MW 220 250 200 Running Cost (a function of P and Q) 1800 2250 1500 Start up cost pro-rated by MSQ 328.358 373.134 298.508 2153.358 2648.134 Per period cost (Total) 1823.508 Schedule Quantities in MWh 110 125 100 Shadow price (€/MWh) 30 55 120 3300 6875 12000 Earnings at shadow price

\ddot{A} A Start-Up cost for Unit 1 = €1000 is incurred at the start of the day.

- Ä Unit 1 recovers its costs in each period
- Ä Earnings=MSQ * Shadow Price
- Ä Hence the unit recovers its costs at the Shadow Price and makes a profit.
 Any higher SMP will just increase the units profit.

Running Cost	=		
Quantity (MWh)	Bid Price	Cost	
100/2 = 50	10	500	
100/2 = 50	20	1000	
20/2 = 10	30	300	
Total Run	ning Cost	1800	

- Ä Unit 2 has no start up or no load costs and has not been forced to run uneconomically by any constraint. Hence it will recover its costs based on the shadow price.
 - Ä While Unit 2 has an energy limit, this only restricts the degree to which it can run, it does not force it to run.
- Ä Units 3a and 3b are interconnectors, and have no start up or no load costs. They are not considered in the calculation of SMP prices.
- Ä Findings for units thus far suggest that SMP could equal shadow price in all periods. However, the situation for Unit 4 may change this...

Period	1	2	3	}
Status	OFF	OFF		ON
No load	0	0		0
Schedule Quantities (MSQ) in MW	0	0		80
Running Cost (a function of P and Q)	0	0		4800
Start up cost pro-rated by MSQ	0	0		500
Per period cost (Total)	0	0		5300
Schedule Quantities in MWh	0	0		40
Shadow price (€/MWh)	30	55		120
Earnings at shadow price	0	0		4800

\ddot{A} A Start-Up cost for Unit 4 = €500 is incurred in that one period it operates.

- Ä Unit 4 does not recover its fuel costs
- Ä For period 3, SMP must be set to at least:
 €120/MWh * (5300/4800) = €132.5/MWh
- Ä SMP at this level ensures that Unit 4 breaks even, but this same price applies to all units.
- Ä While this is the correct SMP value, the method we have used is a simplification.

Running Cost =

Quantity (MWh)	Bid Price	Cost
80/2 = 40	120	4800
Total Run	4800	

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

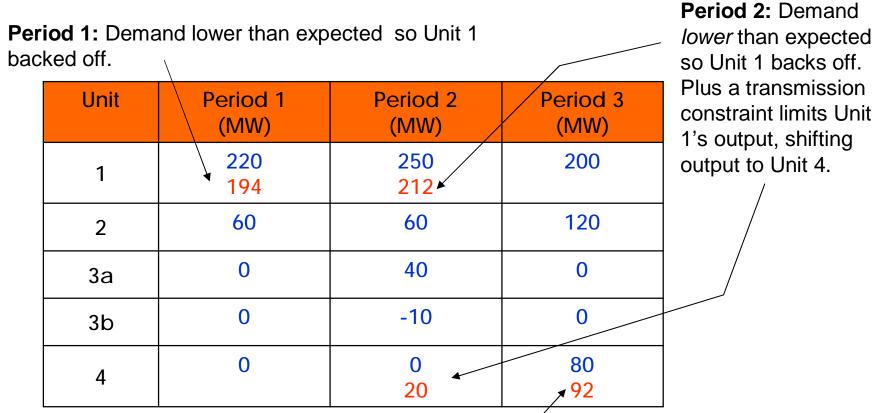
6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION



- Ä The Moyle Interconnector Trading System (MITS) determines modified interconnector user nominations (MIUNs)
 - Ä MIUNs are effectively the interconnector capacity available to each interconnector user in real-time.
- Ä MITS essentially allocates the total flows on the interconnector between the interconnector units in proportion to their right holdings.
- Ä In this example there is no ramp restriction on the interconnector and MITS does not change the solution.

Unit	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
3a	0	40	0
3b	0	-10	0
TOTAL	0	30	0

Ä Real-time scheduling is performed by operators assisted by the Reserve Constrained Unit Commitment (RCUC) model.

IMS Schedule Dispatch Schedule

Market Processes: Bid to Bill March 2007

Period 3: Demand higher than expected

- Ä Dispatch instructions are instructions to move to a specific output in a specific time.
- Ä The market systems include an Instruction Profiling function that converts these instructions into an average MW dispatch instruction quantity per trading interval
- Ä Note that while we have shown all price makers here:
 - Ä Interconnector "dispatch values" are just their MIUN values
 - Ä Demand side unit dispatch quantities are used as their metered quantities.

Unit	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
1	194	212	200
2	60	60	120
3a	0	40	0
3b	0	-10	0
4	0	20	92

Dispatch Schedule

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

- 7. Ex Post Processing of Bids
- 8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

Unit	Period 1 (MWh)	Period 2 (MWh)	Period 3 (MWh)
1 (predictable price maker)	92	106	95
2 (variable price maker)	35	30	65
3a (predictable price maker)	0	20	0
3b (predictable price maker)	0	-5	0
4 (predictable price maker)	0	10	46
5 (predictable price taker)	7	7.5	7.5
6 (variable price taker, non-wind)	4	3	2.5
7 (variable price taker, wind)	1	1	1
8 (autonomous generator)	2.5	3	3
TOTALS	141.5	175.5	220

Note that Unit 2 had an energy limit of 120 MWh but actually produced 130 MWh (i.e. it exceeded both its dispatch instructions and its energy limit)

Unit	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
1 (predictable price maker)	184	212	190
2 (variable price maker)	70	60	130
3a (predictable price maker)	0	40	0
3b (predictable price maker)	0	-10	0
4 (predictable price maker)	0	20	92
5 (predictable price taker)	14	15	15
6 (variable price taker, non-wind)	8	6	5
7 (variable price taker, wind)	2	2	2
8 (autonomous generator)	5	6	6
TOTALS	283	351	440

The MWh to MW conversion is done by simply doubling the half hour meter quantity.

Period 1: Unit 1 supplies less than it was supposed to, but Unit 2 supplies more.

Period 3: Unit 1 supplies less than it was suppose to, but Unit 2 supplies more.

Unit	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
1	220 194 184	250 212	200 190 II
2	60 70	60	120 p 0 130 ť
3a	0	40	0 it
3b	0	-10	0 "
4	0	0 20	tl 80 it 92

In settlements, the noncompliance in each beriod is discouraged by charging Unit 1 an 'imbalance price" greater than the market price for ts 10 MW shortfall, while baying Unit 2 an 'imbalance price" less than the market price for ts 10 MW supply.

IMS Schedule Dispatch Schedule

Metered Schedule

Market Processes: Bid to Bill March 2007

Note: Only results that differ from expectation are shown

Ä For settlement purposes, the price taker meter data is used as their dispatch instructions.

Unit	Period 1	Period 2	Period 3	
	(MW)	(MW)	(MW)	
5	15	15	15	
	14	15	15	
6	8	5	5	
	8	6	5	
7	2	2	2	
	2	2	2	
8	6	6	6	
	5	6	6	

Ex Ante Forecasts/Nominations Dispatch Schedule = Metered Schedule

Market Processes: Bid to Bill March 2007

Unit	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
1 (predictable price maker)	194	212	200
2 (variable price maker)	60	60	120
3a (predictable price maker)	0	40	0
3b (predictable price maker)	0	-10	0
4 (predictable price maker)	0	20	92
5 (predictable price taker)	14	15	15
6 (variable price taker, non-wind)	8	6	5
7 (variable price taker, wind)	2	2	2
8 (autonomous generator)	5	6	6
TOTAL	283	351	440

- Ä Supplier Unit metering is not used in the pricing and scheduling process.
- Ä It only becomes available to the Single Market Operator after all scheduling has been completed and is only used in Settlement .

Unit	Period 1 (MWh)	Period 2 (MWh)	Period 3 (MWh)
Supplier Unit 1	-100	-140	-180
Supplier Unit 2	-35	-32	-37

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

- Ä There are two ex post schedules
 - Ä Indicative produced on day D+1
 - Ä Uses some approximate data where no meter data is available.
 - Ä Initial produced on day D+4
 - Ä All data available.
- Ä The Generator Requirements in these runs only make use of meter data for Generators.
 - Ä Demand-side meter data is only required for settlement
- Ä In this example we assume that we are running an Initial Ex Post Schedule
- Ä All that is different for an indicative Ex Post Schedule is the source of some of the data.

THIS DATA

(There has been no change relative to the IMS run)

Start-up Co	Start-up Cost per start (€)			1,000 No Load Cost				<mark>(€/hour)</mark> 50		
Price	Quantity	Trading Period				1	2	3		
<mark>(€/MWh)</mark>	(MW)	Actual Availability (MW)				250	250	200		
10	100	Actua	Actual Min Stable Generation (MW)				50	50	50	
20	200	Actua	Actual Min Output (MW)			0	0	0		
30	300	Energ	Energy Limit (MWh) N/A Periods			Periods	N/A	N/A	N/A	

IMPLIES THIS UUC INPUT

	Period 1			Per	Period 2			Period 3			
	PriceInc QuarAny50		uantity	Price	Inc Quantity	Р	rice	Inc Quant	ity		
			50	Any	50	A	Any	50			
	10	50 100		10	50		10	50 100			
	20			20	100		20				
	30 50		50	30 50							
Chant			1 000		25	F ig. a man					
Start	-up Cost per st	art (€)	1,000	No Load C	ost (€/period)	25	5 Energy Limit (MWh)		N/A		

THIS DATA (Energy Limit increased to reflect higher meter data, while availability in period 2 decreased)

Start-up Co	Start-up Cost per start (€)			No Load Cost (€/hour) 0					
Price	Quantity	Tradir	Trading Period				1	2	3
(€/MWh)	(MW)	Actual Availability (MW)			200	190	200		
10	50	Actua	al Min Stable	Ger	neration	(MW)	60	60	60
20	100	Actua	Actual Min Output (MW)			0	0	0	
25	200		Energy Limit (MWh) 130 Periods					ü	
		Energ	y Linnit (ivivvr	IJ	130	Pendas	ü	ü	u

IMPLIES THIS UUC INPUT

	Peri	od 1		Per	iod 2		Р	Period 3	
	PriceInc QuantityAny60		Price	Price Inc Quantity		ice	Inc Quantity		
			0	Any	60	A	ny	60	
	20	4	0	20	40		20	40	
	25	25 100		25	25 <mark>90</mark>		25	100	
	Energy Limited Period		Energy Limited Period			Energy Limited Period			
Start	Start-up Cost per start (€) 0			No Load Cost (€/period)		0	Energy	· Limit (MWh)	130
									58

THIS DATA

Period 1	Price (€/MWh)	Quantity (MW)	Period 2	Price (€/MWh)	Quantity (MW)	Period 3	Price (€/MWh)	Quantity (MW)
	5	-20		5	-20		5	-20
	40	20		40	20		40	20
	50	40		50	40		50	40

Ex ante, unit could be scheduled between -40 and +40, but now it is limited to a range between 0 and its MIUN value of 40.

	30	40			30	40	0
Trading Perio	od			1	2	3	
MIUN				0	+40	0	
Max Capac	ity = Max(0,	MIUN) (M	N)	0	+40	0	
Min Capacit	y = Min(0, N	MUN) (MW)	0	0	0	

(The treatment of MIUN changes the input to the UUC)

IMPLIES THIS UUC INPUT

Per	iod 1	Per	riod 2	Period 3		
Price	Price Inc Quantity		Inc Quantity	Price	Inc Quantity	
0	0	Any	0	0	0	
		40	20			
		50	20			
					59	

Market Processes: Bid to Bill March 2007

THIS DATA

Price Quantity Price Quantity Price Quantity Period 3 Period 2 Period 1 (€/MWh) (€/MWh) (MW) (€/MWh) (MW) (MW) 55 0 55 0 55 0 60 60 60 65 65 65

Ex ante, unit could be scheduled between -60 and +60, but now it is limited to a range between 0 and its MIUN value of -10 MW.

Trading Period	1	2	3
MIUN	0	-10	0
Max Capacity = Max(0, MIUN) (MW)	0	0	0
Min Capacity = Min(0, MIUN) (MW)	0	-10	0

(The treatment of MIUN changes the input to the UUC)

IMPLIES THIS UUC INPUT

Peri	od 1	Per	iod 2	Period 3			
Price Inc Quantity		Price	Inc Quantity	Price	Inc Quantity		
0	0	Any	-10	0	0		
		55	10				
					60		

Market Processes: Bid to Bill March 2007

THIS PARTICIPANT DATA(There has been no change relative to the IMS run)

Shut Down Cost per stop (€)500No Load Cost				: (€/hou	r) N/A			
Price					1	2	3	
(€/MWh)	(MW)	Actua	Actual Availability (MW)			100	100	100
120	100	Actua	Actual Min Stable Generation (MW)Actual Min Output (MW)Energy Limit (MWh)N/APeriods			0	0	0
		Actua				0	0	0
		Energ				N/A	N/A	N/A

IMPLIES THIS UUC INPUT

Period 1		Period 2		Period 3		
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity	
120	100	120	100	120	100	

	Start-up Cost per start (€)	500	No Load Cost (€/period)	0	Energy Limit (MWh)	N/A
--	-----------------------------	-----	-------------------------	---	--------------------	-----

UNIT 1 DATA WITH PRIORITY DISPATCH

Period 1		Period 2		Period 3		
Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity	
Any	50	Any	50	Any	50	
10	50	10	50	10	50	
19.999	100	19.999	100	19.999	100	
30	50	30	50			

Start-up Cost per start (€) 1,000 No Load Cost (€/period)

Energy Limit (MWh)

25

N/A

UNIT 2 DATA WITHOUT PRIORITY DISPATCH

[Period 1		Per	riod 2	F	Period 3
	Price	Inc Quantity	Price	Inc Quantity	Price	Inc Quantity
	Any	60	Any	60	Any	60
	20.001	40	20.001	40	20.001	40
	25	100	25	90	25	100
	Energy Limited Period		Energy Limited Period		Energy Limited Period	
Start-up Cost per start (€) 0		No Load C	ost (€/period)	0 Energy	/ Limit (MWh) 130	

Market Processes: Bid to Bill March 2007

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

Ex Post Generation Requirement

	MW
Meter Generation Price Maker Units	А
Plus Meter Generation I/C Units	В
Plus Meter Generation Demand Side Units	С
Plus Load Shedding Estimate	D
Plus DQ for Interconnector Residual Capacity Unit*	E
Minus Constrained Up/Down for Price Takers	F

Ex Post Generation Requirement

A+B+C+D+E-F

* This is effectively the inter-jurisdictional trade across the interconnector. We assume this is 0 MW.

	Period 1	Period 2	Period 3
Metered Price Maker Generation (non DSU/IU)			
Unit 1	184	212	190
Unit 2	70	60	130
Total (A)	254	272	320
Metered IU Generation (Calculated)			
Unit 3a	0	40	0
Unit 3b	0	-10	0
Total (B)	0	30	0
Metered DSU Generation (Calculated)			
Unit 4	0	20	92
Total (C)	0	20	92
Load Shedding Estimate (D)	0	0	0
Dispatch Quantity for Interconnector Residual Capacity Unit (E)	0	0	0

All measurements in MW.

Sum of Price-Taker differences (Nomination/Availability Profile-Metered)	Period 1	Period 2	Period 3
Unit 5 (Predictable Price Taker) Nomination			
Nom Profile	15	15	15
Meter	14	15	15
Difference	1	0	0
Unit 6 (Variable Price Taker, Non-Wind) Nomination			
Nom Profile	8	5	5
Meter	8	6	5
Difference	0	-1	0
Unit 7 (Variable Price Taker, Wind) Forecast			
Availability Profile	2	2	2
Meter	2	2	2
Total	0	0	0
Sum of Differences (F)	1	-1	0

All measurements in MW.

Unit 8 is not included. It is an autonomous unit and as such there is no expectation that it will comply with any specific schedule level.

Market Processes: Bid to Bill March 2007

	Period 1	Period 2	Period 3
Metered Price Maker Generation (non DSU/IU) (A)	254	272	320
plus Metered IU Generation (B)	0	30	0
plus Metered DSU Generation (C)	0	20	92
plus Load Shedding Estimate (D)	0	0	0
plus Dispatch Quantity for Residual I/C Unit (E)	0	0	0
Less Sum of Price Taker differences (Nom Profile/Avail-Metered) (F)	-1	1	0
Ex-Post Generation Requirement (MW)	253	323	412
Ex-Ante Generation Requirement	280	340	400

All measurements in MW.

In period 1 the ex post generation requirement of 253 MW reflects:

- 254 MW of metered price maker generation
- Less 1 MW because price taker Unit 5 provided 1 MW less than it nominated. This is assumed to be due to a constraint, so that 1 MW should have been provided by Unit 5, not the price maker units.

In period 2 the ex post generation requirement of 323 MW reflects:

- 272+30+20 = 322 MW of metered price maker generation
- Plus 1 MW because price taker Unit 6 provided 1 MW more than it nominated. This is assumed to be due to a constraint, so that 1 MW should have been provided by price maker units, not Unit 6.

A. BID SECTION

1. Setting the Scene

2. Bids

3. Ex Ante Generation Requirement

4. Ex Ante UUC Solution

5. Interconnectors & Dispatch Schedules

6. Meter Data

7. Ex Post Processing of Bids

8. Ex Post Generation Requirement

9. Ex Post UUC Solution

B. SETTLEMENT SECTION

- Ä Generation Requirement = 253MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä The interconnector units have no availability for this period.
- Ä Unit 1's €10 bid is scheduled next.
- Ä Unit 1's priority dispatch adjusted €20 bid supplies the last 93 MW required and sets the price.
- Ä The remaining bids are too expensive.
- Ä Note that the tie between bids from Units 1 and 2 has been resolved in favour of the unit with priority dispatch.

Ä Shadow Price is €20/MWh

	Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ
١	1	Any	50	50	50
	2	Any	60	60	110
	1	10	50	50	160
	<u>1</u>	<u>19.999</u>	<u>100</u>	<u>93</u>	<u>253</u>
	2	20.001	40	0	253
	2	25	100	0	253
	1	30	50	0	253
	4	120	100	0	253
		TOTAL	253		

- Ä Generation Requirement = 323MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä Units 3a and 3b are assumed to be committed so will provide their maximum export at any price (0 MW and -10 MW)
- Ä We continue up the merit order skipping Unit 2 because of its energy limit which will have it scheduled in period 3.
- Ä Unit 1 is scheduled to capacity.
- Ä Unit 3a's €40 bid and part of its €50 bid are scheduled before the load is covered.
 - Ä Shadow Price is €50/MWh

Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ		
1	Any	50	50	50		
2	Any	60	60	110		
3a	Any	0	0	110		
3b	Any	-10	-10	100		
1	10	50	50	150		
1	19.999	100	100	250		
2	20.001	40	0	250		
2	25	90	0	250		
1	30	50	50	300		
3a	40	20	20	320		
<u>3a</u>	<u>50</u>	<u>20</u>	<u>3</u>	<u>323</u>		
3b	55	10	0	323		
4	120	100	0	323		
	TOTAL					

- **Ä** Generation Requirement = 412MW
- Ä Units 1 and 2 are assumed to be committed so must cover their minimum stable generation (50 MW and 60 MW at any price)
- Ä The interconnector units have no availability for this period.
- Ä Unit 1's €10 & priority dispatch adjusted €20 bids scheduled next.
- Ä Unit 2 provides all its 40 MWh of available energy in this period by supplying 80 MW for 30 minutes.
- Ä We still need to cover 72 MW of load, so must commit Unit 4, incurring its start-up cost of €500. The bid price of Unit 4 sets the price in this period.

Ä Shadow Price is €120/MWh

Unit	Price	Incremental Quantity	MSQ	Cumulative MSQ			
1	Any	50	50	50			
2	Any	60	60	110			
1	10	50	50	160			
1	19.999	100	100	260			
2	20.001	40	40	300			
2	25	100	40	340			
<u>4</u>	<u>120</u>	<u>100</u>	<u>72</u>	<u>412</u>			
	TOTAL						

Period	1	2	3
Ex Post Shadow Price (€/MWh)	20	50	120
Ex Ante Shadow Price (€/MWh)	30	55	120

Unit	Period 1 MSQ (MW)	Period 2 MSQ (MW)	Period 3 MSQ (MW)
1	193	250	200
2	60	60	140
3a	0	23	0
3b	0	-10	0
4	0	0	72

Period	1	2	3
Status	ON	ON	ON
No load	25	25	25
Schedule Quantities (MSQ) in MW	193	250	200
Running Cost (a function of P and Q)	1430	2250	1500
Start up cost pro-rated by MSQ	300.155	388.803	311.042
Per period cost (Total)	1755.155	2663.803	1836.042
Schedule Quantities in MWh	96.5	125	100
Shadow price (€/MWh)	20	50	120
Earnings at shadow price	1930	6250	12000

\ddot{A} A Start-Up cost for Unit 1 = €1000 is incurred at the start of the day.

- Ä Unit 1 recovers its costs in each period
- Ä Earnings=MSQ * Shadow Price
- A Hence the unit recovers its costs at the Shadow Price and makes a profit.
 Any higher SMP will just increase the units profit.

Running Cost =						
Quantity (MWh)	Bid Price	Cost				
100/2 = 50	10	500				
93/2 = 46.5	20	930				
Total Running Cost 1430						

Period	1	2	3	}
Status	OFF	OFF		ON
No load	0	0		0
Schedule Quantities (MSQ) in MW	0	0		72
Running Cost (a function of P and Q)	0	0		4320
Start up cost pro-rated by MSQ	0	0		500
Per period cost (Total)	0	0		4820
Schedule Quantities in MWh	0	0		36
Shadow price (€/MWh)	30	55		120
Earnings at shadow price	0	0		4320

\ddot{A} A Start-Up cost for Unit 4 = €500 is incurred in that one period it operates.

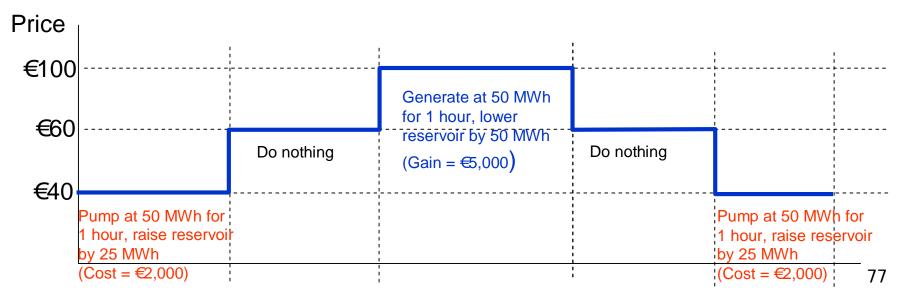
- Ä Unit 4 does not recover its fuel costs
- Ä For period 3, SMP must be set to at least:
 €120/MWh * (4820/4320) = €133.89/MWh
- Ä SMP at this level ensures that Unit 4 breaks even, but this same price applies to all units.

Running Cost =

Quantity (MWh)	Bid Price	Cost
72/2 = 36	120	4320
Total Run	4320	

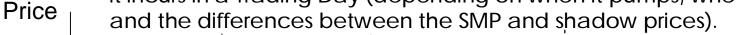
Period	1	2	3
Ex Post SMP (€/MWh)	20	50	133.89
Ex Ante SMP (€/MWh)	30	55	132.5

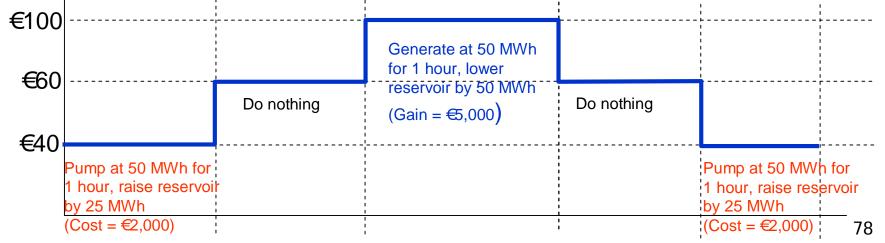
Unit	Ex Ante Schedule (MW)	DSQ (MW)	Meter Schedule (MW)	Ex Post Schedule (MW)
1 (predictable price maker)	250 —	▶ 212	212 —	→ 250
2 (variable price maker)	60	60	60	60
3a (predictable price maker)	40	40	40 —	→ 23
3b (predictable price maker)	-10	-10	-10	-10
4 (predictable price maker)	0	20	20 —	→ 0
5 (predictable price taker)	15	15	15	15
6 (variable price taker, non-wind)	5 —	▶ 6	6	6
7 (variable price taker, wind)	2	2	2	2
8 (autonomous generator)	6	6	6	6
TOTAL	368 —	→ 351	351 —	→ 352


Changes due to constraints and lower demand than forecast

--- Changes due to 1 MW over-supply by price takers. Unit 3A now supplies that 1 MW so it is priced.

---- Changes due to re-optimising schedule with different interconnector limits.


- Ä We have not considered these so far due to the complexity of the inter-temporal relationships.
 - Ä Our pump storage unit which can pump at 50 MW or generate at 50 MW
 - Ä 1 MWh of pumping raises reservoir by 0.5 MWh
 - Ä 1 MWh of generation lowers reservoir by 1 MWh
 - Ä In this example, no net change in reservoir level is allowed over the day.
- Ä In this example we assume some shadow prices to illustrate how the unit is scheduled (note the they are settled based on SMP prices)



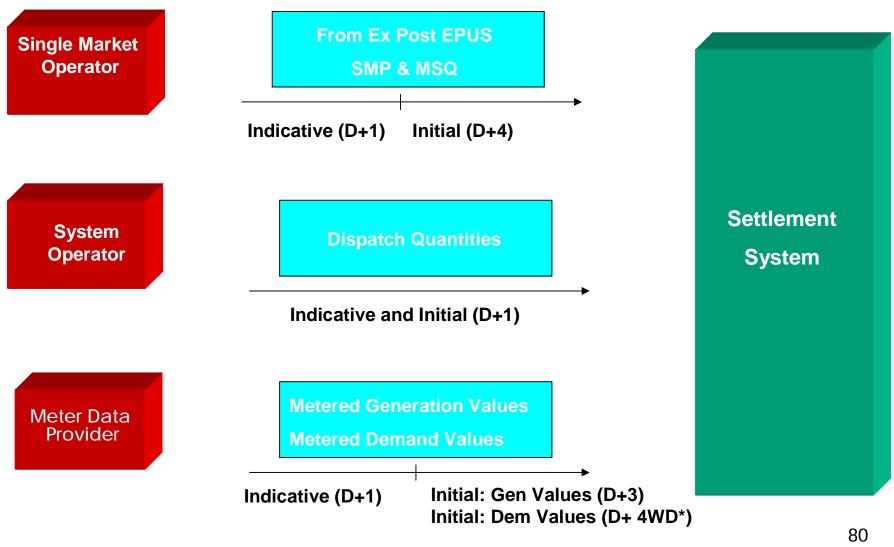
Market Processes: Bid to Bill March 2007

- Ä Note that the unit cannot make money by pumping at €40 and generating at €60, or by pumping at €60 and generating at €100 because it must pump 2 MWh for each 1 MWh it generates. This is not profitable at these prices.
- Ä It will only generate or pump at €60 if the reservoir level is forced to increase or fall over the day (due to end of day targets) of if some other constraint applies to it.
- Ä Total gain over day at the shadow price is €1000
 - Ä But this is based on the shadow prices over the optimisation horizon
 - Ä Actually settled on SMP prices, and only settled for first 24 hours.
 - Ä A pump storage unit may under-recover or over-recover the pumping costs it incurs in a Trading Day (depending on when it pumps, when it generates,

A. BID SECTION

B. SETTLEMENT SECTION

1. Introduction


2. Energy Payments and Charges

3. Capacity Payments and Charges

4. Market Operator Charges

5. Payment Timeline

*WD = Working Days

- Ä Settlement Statements
 - Ä Issued on the same days as Indicative and Initial Settlement Runs
 - Ä Issued electronically
 - Ä Has settlement data by Trading Period by Generating Unit / Supplier Unit
 - Ä Most of the details shown in our example are at the level of detail that would appear on Settlement Statements
 - Ä Sign convention for payments and charges on Settlement Statements
 - Ä A positive number is a positive payment to a participant by the SMO while a negative number is a positive payment by a participant to the SMO.

Ä Invoices

- Ä Issued less frequently, at the end of each Billing Period
- Ä Different types of invoices for different payments/charges
- Ä Issued electronically and by mail
- A Has aggregate total data for the Billing Period for all Generating Units and (on separate invoices) for all Supplier Units
- Ä Sign convention for payments and charges on Invoices
 - Ä The reverse of Settlement Statements. A positive number is an amount owed to the SMO while a negative number is an amount owed by the SMO.)

- Ä Transmission Loss Adjustment Factors
 - Ä To keep things simple, these are all assumed to have values of 1.0
- Ä Settlement Reallocation
 - A One participant can re-allocate its settlement obligations to another participant. This option is ignored
- Ä Simplified representation of Trading Sites
 - Ä We ignore of complexities associated with Trading Sites
- Ä Smaller set of Generating Units and Supplier Units
 - Ä In examples we only consider Generator Units 1 & 2 and Supplier Units 1 & 2
 - All diagrams of invoices show Generator Unit 1 data or Supplier Unit 1 data, depending on the type of invoice.
- A Where we use values not shown in the earlier scheduling examples, the numbers used are entirely made up and should NOT be viewed as representative of real values that might arise in the market.

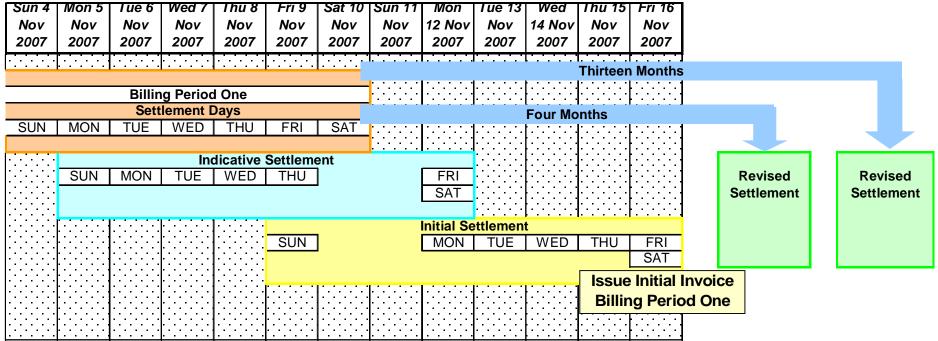
A. BID SECTION

B. SETTLEMENT SECTION

1. Introduction

2. Energy Payments and Charges

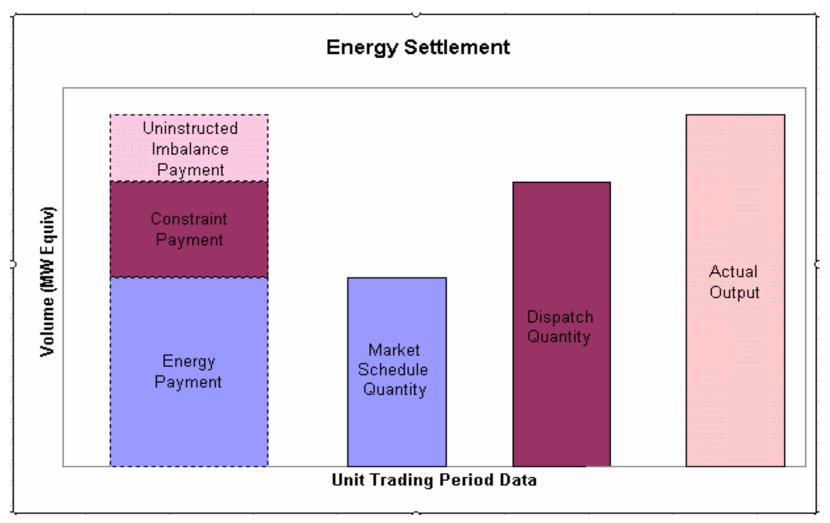
3. Capacity Payments and Charges


4. Market Operator Charges

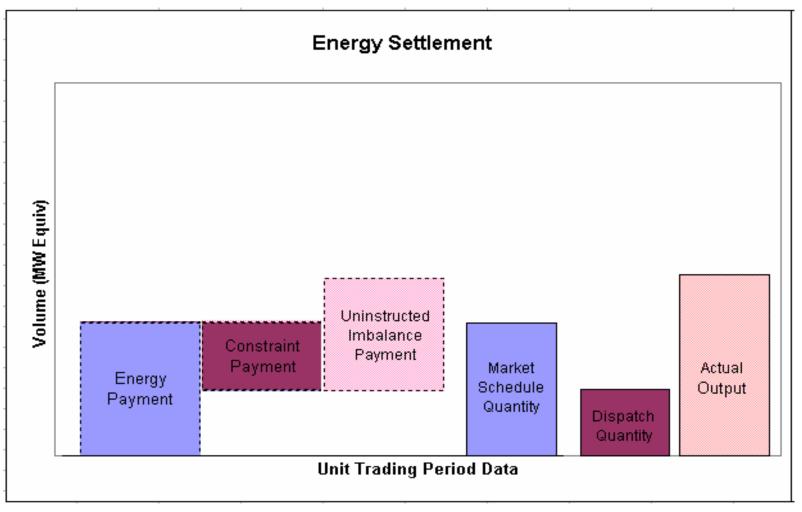
5. Payment Timeline

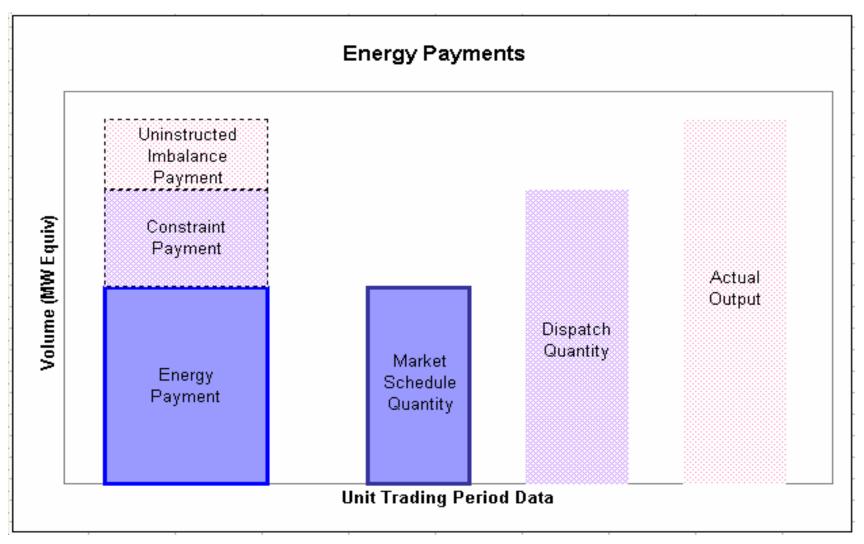
Timing of Indicative, Initial and Revised Settlement for a Billing Period

- S A Settlement Day is calendar day which includes the last 6 hours of one Trading Day and the first 18 hours of the next.
- § Indicative Settlement occurs 1 Working Day after the Settlement Day
- **§** Initial Settlement occurs 5 Working Days after the Settlement Day
- **§** A Billing Period is one week

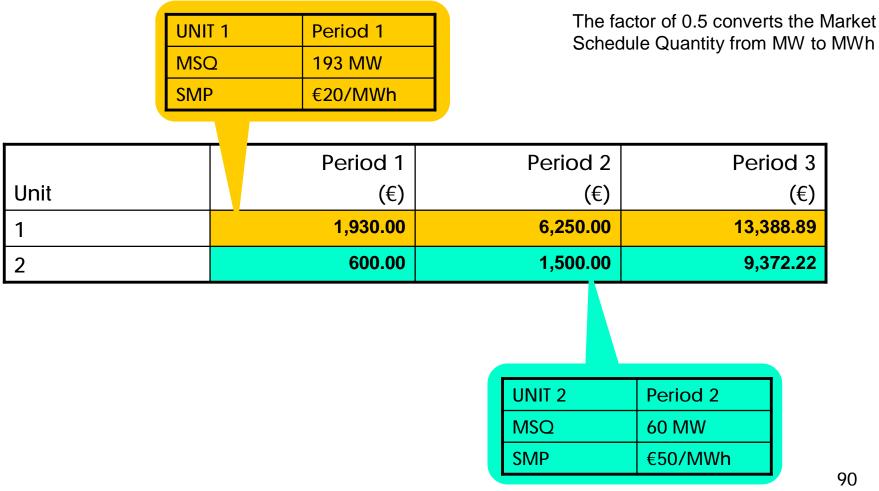


			From : Power : Baggot Street	Station Co
	Self Billing Invoice To: Market Operator 42 Merrion Square Invoice 12 Settlement Type - Initial Invoice Type - Energy 7654321	Date of Issue: 2 Due Date: 1/3/0 Billing Period: 7	17	
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt
	Energy Payments	- 21,568.89		- 24,480.69
	Constraint Payments	560.00		635.60
	Uninstructed Imbalance Payments	3,037.45	410.06	3,447.51
	Total Invoice	- 17,971.44	- 2,426.14	- 20,397.58
	Settlement Reallocation(s)			
	Amount Due			- 20,397.58


			From : Market (12 Merrion Squ	
	Invoice To: Supplier Co Baggot Street Invoice 12 Settlement Type - Initial Invoice Type - Energy 1234567	F Date of Issue: 23/ Due Date: 1/3/07 Billing Period: 7		
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt
	Energy Charge	33,100.00	4,468.50	37,568.50
	Imperfections Charge	1,050.00	141.75	1,191.75
	Total Invoice	34,150.00	4,610.25	38,760.25
	Settlement Reallocation(s)			
	Amount Due			38,760.25

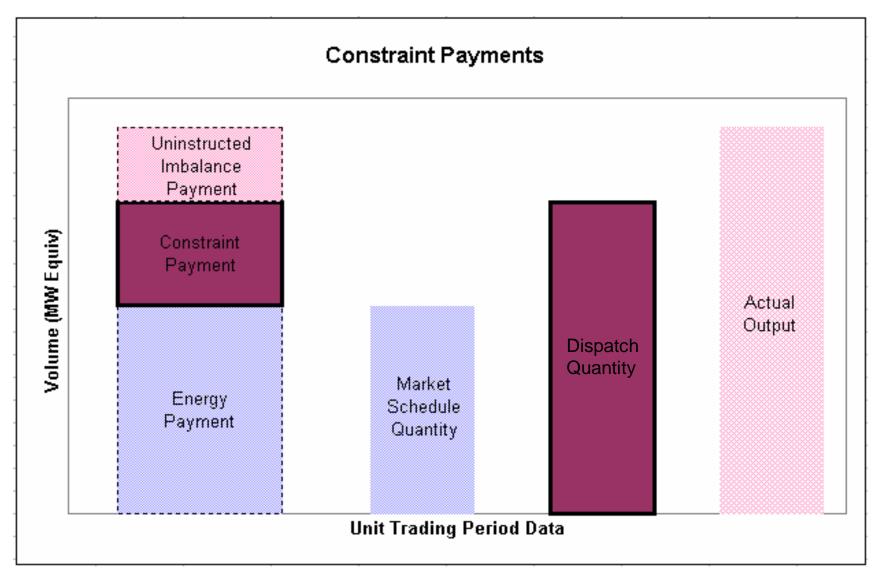


The purpose of this slide is to show that there are many permutations as to how Energy Payments, Constraint Payments and Uninstructed Imbalance Payments can interact.



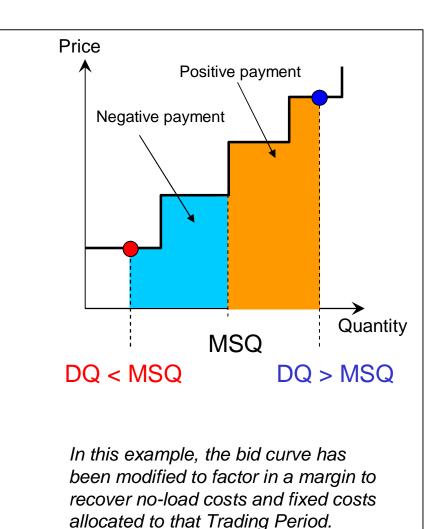
Energy Payment = 0.5 x Market Schedule Quantity x System Marginal Price

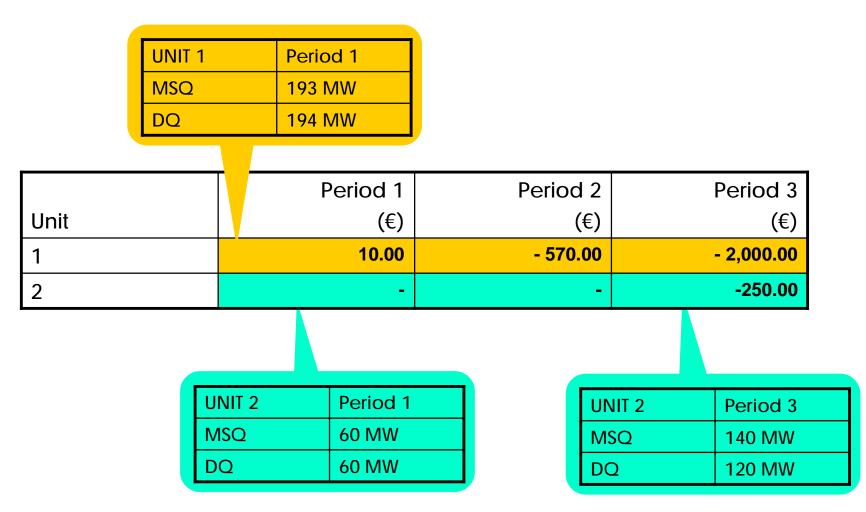
90


Energy Charge = Net Demand x System Marginal Price

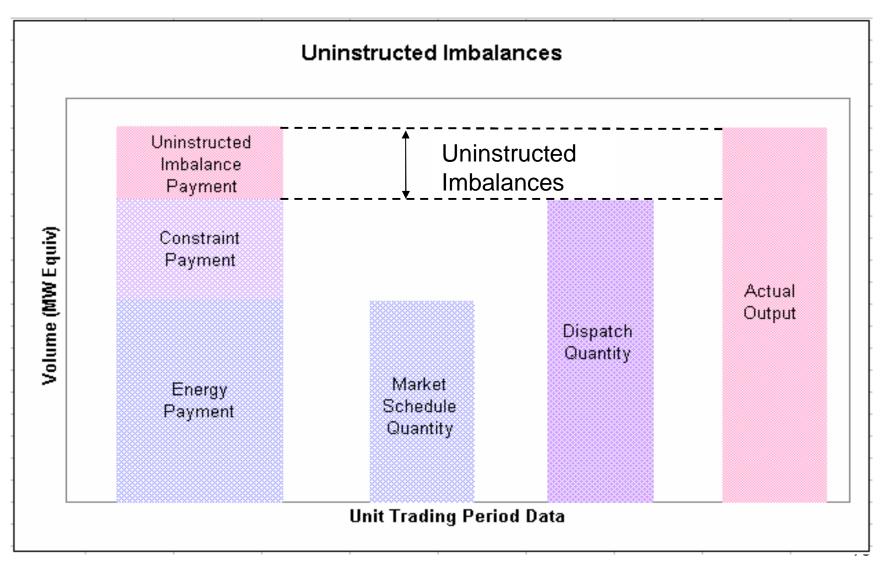
Net Demand is a MWh quantity reflecting the import of energy onto a Trading Site.

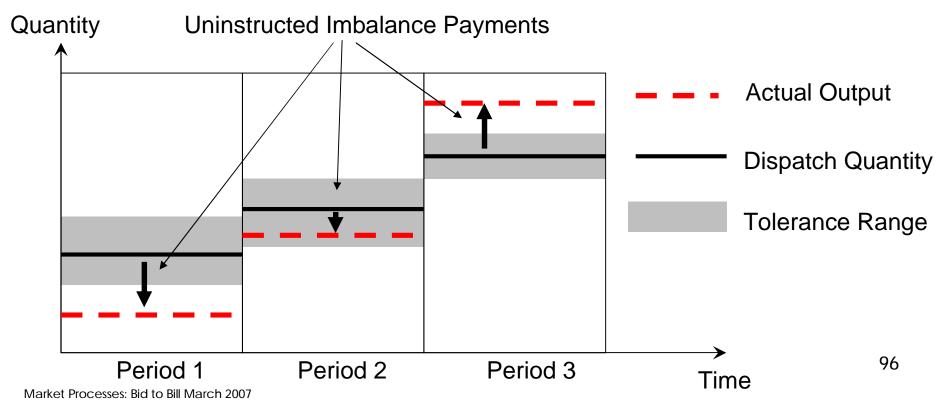
	Per	riod 1	Period 2	Period 3
Supplier Unit		(€)	(€)	(€)
Supplier Unit 1	-2,0	00.00	-7,000.00	-24,100.00
Supplier Unit 2	-	700.00	-1,600.00	-4,953.89

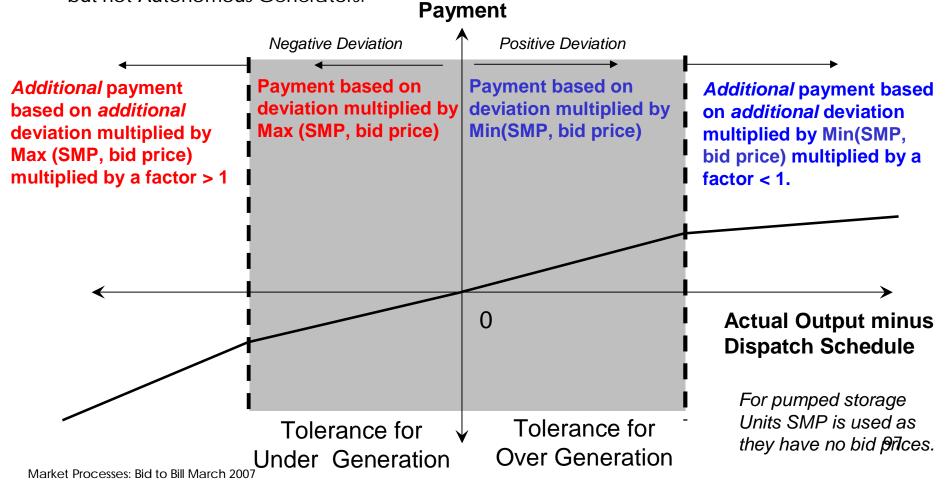

UNIT 1	Period 1
ND	-100 MWh
SMP	€20/MWh



- A Constraint Payment apply where the Dispatch Quantity differs from the Market Schedule Quantity in respect of a Generator Unit in a Trading Period.
- Ä Constraint Payments compensate for additional costs incurred, or to eliminate compensation for costs not incurred.
- Ä Constraint Payment can be positive or negative:
 - § If DQ > MSQ, payment to Generator Unit
 - § If DQ < MSQ, charge to Generator Unit
- Ä Consideration for payment includes
 - Ä Bid Price
 - Ä Start cost
 - Ä No load cost
- A Price Takers do not get these Constraint Payments, but are compensated for constraints via Energy Payments and Uninstructed Balance Payments.
- Autonomous generators do not get Constraint Payments.




Here we just show the volume difference. To determine the results shown it is necessary to consider the bid curve relative to the quantities shown for each period. 94



- Ä If the Actual Output (meter data) of a Generator Unit differs from the Dispatch Quantity then an Uninstructed Imbalance Payment (UNIMP) will be calculated.
- Ä Value of UNIMP depends on the variation between the Actual Output and the Dispatch Quantity, and whether that variation is within the Tolerance Bands.
- Ä The tolerance varies by Trading Period and Generating Unit based on Generating Unit characteristics and the state of the power system at that time.

- Ä The value of the Uninstructed Imbalance Payment is determined for each Trading Period and varies depending on whether the deviation is inside or outside the tolerance, or up or down.
- Ä Uninstructed imbalances apply to Price Makers and Price Takers (relative to their nominations) but not Autonomous Generators.

	Period 1	Period 2	Period 3
Tolerance for Over Generation (TOLOG)	1.9	2.5	2.0
Tolerance for Under Generation (TOLUG)	-18.3	-18.5	-18.4
Upper Tolerance Limit	195.9	214.5	202
Dispatch Schedule Quantity	194	212	200
Lower Tolerance Limit	175.7	193.5	181.6
Actual Quantity	184	212	190
Over or Under Generation?	Under	Neither	Under
Deviation Quantity (MW)	-10 MW	0 MW	-10 MW
Deviation Quantity (MWh)	-5 MWh	0 MWh	-5 MWh
Max (SMP, Bid Price)	€20/MWh	N/A	€133.89/MWh
Payment within Tolerance Range	-€100	0	-€669.45
Payment beyond Tolerance Range (assuming a factor of 1.04)	0	0	0
Imbalance Payment	-€100	0	-€669.45

	Period 1	Period 2	Period 3
Tolerance for Over Generation (TOLOG)	1.0	1.0	1.4
Tolerance for Under Generation (TOLUG)	-11.9	-11.9	-12.1
Upper Tolerance Limit	61.0	61.0	121.4
Dispatch Schedule Quantity	60	60	120
Lower Tolerance Limit	48.1	48.1	107.9
Actual Quantity	70	60	130
Over or Under Generation?	Over	Neither	Over
Deviation Quantity (MW)	10 MW	0 MW	10 MW
Deviation Quantity (MWh)	5 MWh	0 MWh	5 MWh
Min (SMP, Bid Price)	€20/MWh	N/A	€25/MWh
Payment within Tolerance Range	€10	€0	€17.7
Payment beyond Tolerance Range	€86.4	€0	€103.2
(assuming a factor of 0.96)			
Imbalance Payment	€96.4	€0	€120.9

	Period 1	Period 2	Period 3
Generator Unit	(€)	(€)	(€)
1	-100	-	-669.45
2	96.4	-	120.9

- Ä What is a Make Whole Payment?
 - Ä A payment made to a Generator if, across a Billing Period, the total Energy Payment to that generator is less than its scheduled production costs.
 - Ä The scheduled production cost is based on:
 - Ä The Price-Quantity Pairs,
 - Ä Start Costs
 - Ä No-Load Costs
 - Ä Market Schedule Quantities
 - Ä It is not available to Pumped Storage Generator Units (which do not bid) or to Price Taker and Autonomous Generator Units

Ä In this example we assume that the Generator Make Whole Payments are zero.

	Billing Period	
Generator Unit	(€)	
1	0	
2	0	

Imperfections Charge = Net Demand x Imperfections Price

- A Charge levied on suppliers to recover Constraint Payments, Uninstructed Imbalance Payments and Make Whole Payments.
- Ä The Imperfections Price is a charge per MWh estimated in advance of each year.

	Perio	od 1	Ре	eriod 2	Period 3
Supplier Unit			(€)	(€)	
Supplier Unit 1	-25	0.00	-	-350.00	-450.00
Supplier Unit 2	-8	7.50		-80.00	-92.50
UNIT 1		Peri	od 1		
	ND -100)MWh		
	Imperf. Price	€2.50/MWh			

			From : Market Operator 42 Merrion Square	
	Invoice To: Supplier Co Baggot Street Invoice 12 Settlement Type - Initial Invoice Type - Energy 1234567	PART 1232 Date of Issue: 23/2/07 Due Date: 1/3/07 Billing Period: 7		
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt
	Energy Charge	33,100.00	4,468.50	37,568.50
	Imperfections Charge	1,050.00	141.75	1,191.75
	Total Invoice	34,150.00	4,610.25	38,760.25
	Settlement Reallocation(s)			
	Amount Due			38,760.25

A. BID SECTION

B. SETTLEMENT SECTION

1. Introduction

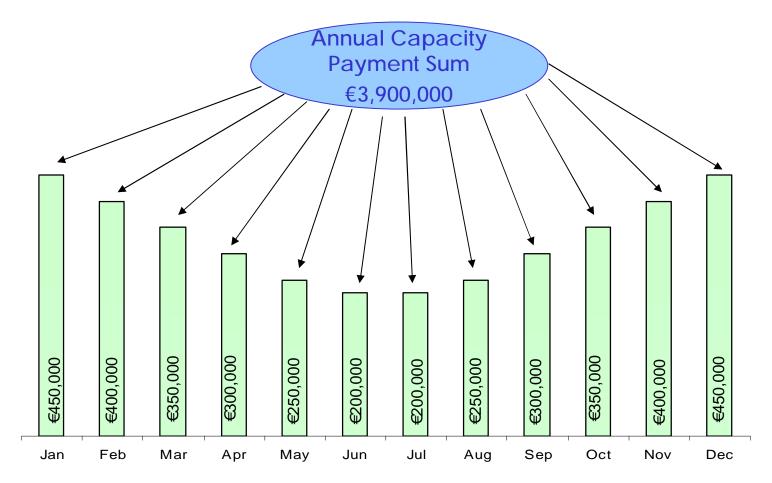
2. Energy Payments and Charges

3. Capacity Payments and Charges

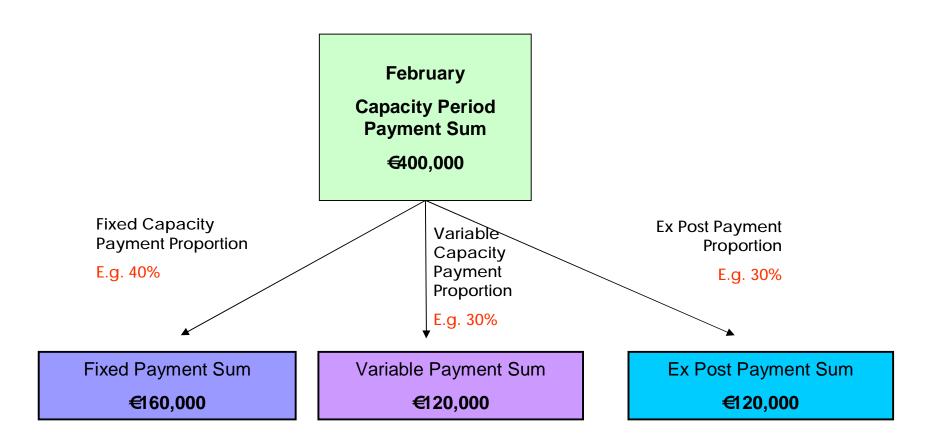
4. Market Operator Charges

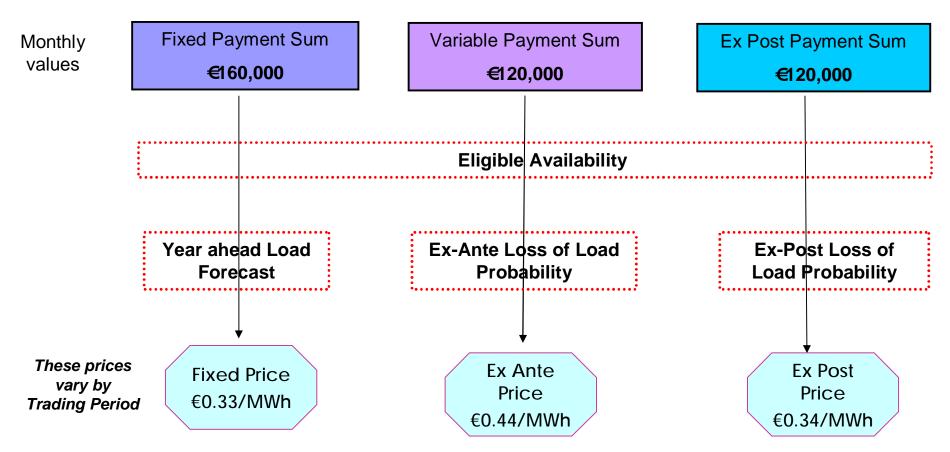
5. Payment Timeline

- Ä Spare Capacity is required to ensure the reliable operation of the SEM.
- Ä Capacity Payments are made to Generator Units for the supply of generation availability.
- Ä The mechanism provides short to medium signals to existing participants so that they can optimise their availability based where it is needed most
- Ä Capacity Payments also provide a degree of financial certainty for participants, thus encouraging and facilitating new investment.
- Ä Capacity market is settlement is on a calendar month basis.

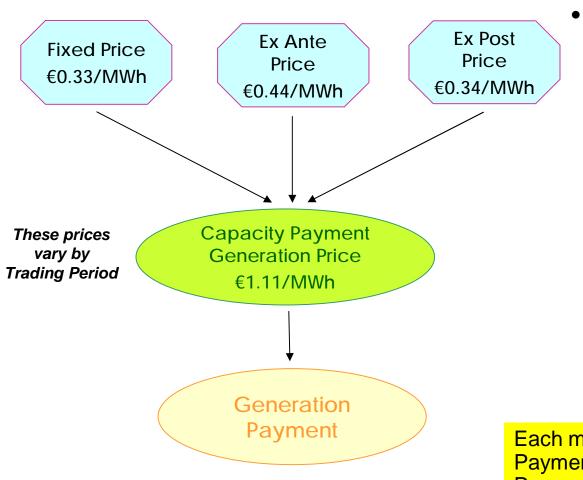


		From : Power Station Co Baggot Street			
Self Billing Invoice To: Single Market Operator 42 Merrion Square Invoice 2 Settlement Type - Initial Invoice Type - Capacity 7654321		PART 1232 Date of Issue: 5/3/07 Due Date: 9/3/07 Capacity Period:2			
Charge_ID	Charge_Type	Net Amt	VAT		
				Gross Amt	
	Capacity Payments	- 428.50 -	57.85	Gross Amt - 486.35	
	Capacity Payments Total Invoice Settlement Reallocation(s)	- 428.50 - - 428.50 - - 428.50 -			


			From : Market Operator 42 Merrion Square	
	Invoice To: Supplier Co Baggot Street Invoice 2 Settlement Type - Initial Invoice Type - Capacity 1234567	PART 1232 Date of Issue: 5/3/07 Due Date: 9/3/07 Capacity Period:2		
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt
	Capacity Charge	1,116.82	150.77	1,267.59
	Total Invoice	1,116.82	150.77	1,267.59
	Settlement Reallocation(s)			
	Amount Due			1,267.59



Ä Annual Capacity Payment Sum is broken down into 12 Capacity Period Payment Sums



Conceptually, each component is determined in the same way - the fixed amount for the month is converted into a per MWh payment based on the Eligible Availability in the system and the "factor" for each Trading Period relative to the sum over the month of those "factors". The three approaches use different "factors" – year ahead forecast Trading Period demand or loss of load probabilities. 110

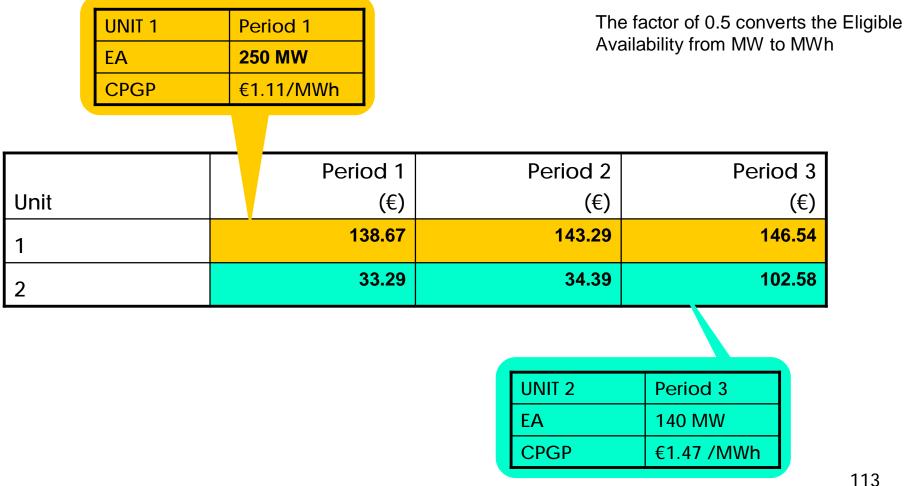
Market Processes: Bid to Bill March 2007

- For each Trading Period
 - Aggregate the component prices to the Capacity Payment Generation Price (CPGP).
 - Apply the Price to the Eligible Availability for each Generator Unit to calculate the Capacity Payment.

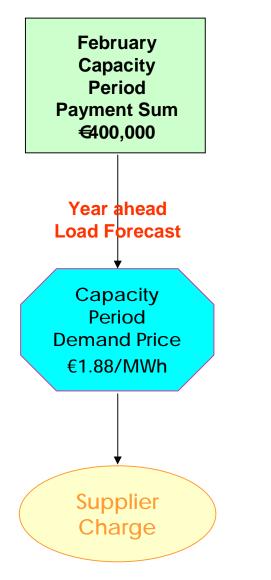
Each month the sum of the Capacity Payments equals the Capacity Period Payment Sum for that month.

ÄMethodology

Ä For most units (e.g. Unit 1)

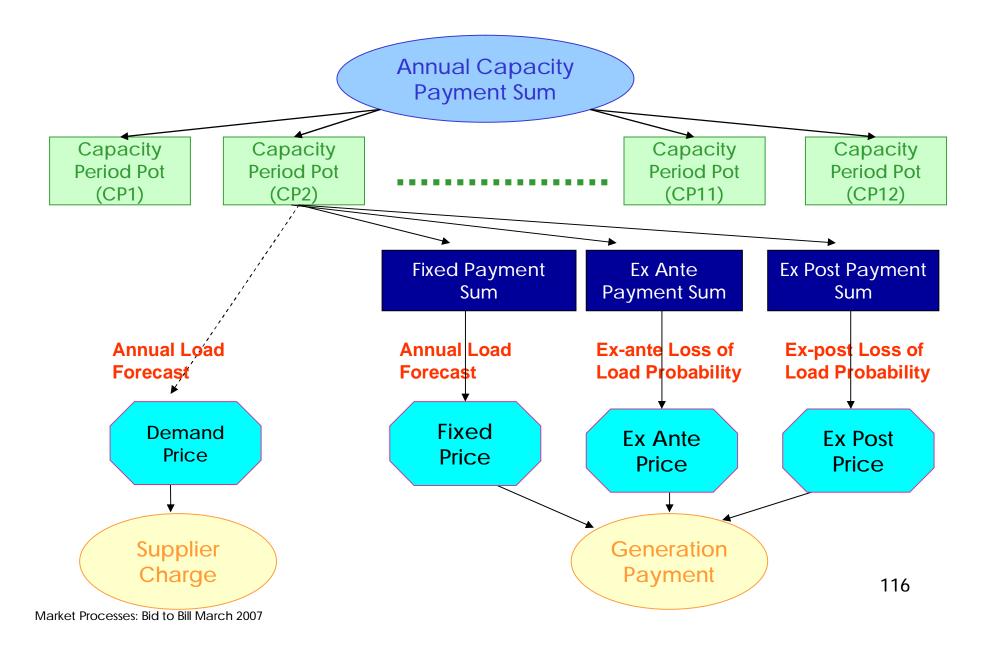

- Ä Eligible Availability equals its ex post availability, i.e. its Availability Profile used in the Ex Post UUC Calculation
- Ä Special rules for Energy Limited Generator Units (e.g. Unit 2)
 - Ä Simplistically, the lesser of the Market Schedule Quantity and its Availability Profile is used.

Ä The actual methodology is more complicated.


	Period 1 (MW)	Period 2 (MW)	Period 3 (MW)
Availability Profile (Unit 1)	250	250	200
Eligible Availability (Unit 1)	250	250	200
Availability Profile (Unit 2)	200	200	200
Market Schedule Quantity (Unit 2)	60	60	140
Eligible Availability (Unit 2)	60	60	140

Capacity Payment = 0.5 x Eligible Availability x Capacity Payment Generation Price

- Capacity Charges are levied on Supplier Units to fund Capacity Payments made to Generator Units.
- The Capacity Charge amount per Trading Period is based on the Annual Forecast Demand


Each month the sum of the Capacity Charges equals the Capacity Period Payment Sum for that month.

Market Processes: Bid to Bill March 2007

Capacity Charge = Net Demand x Capacity Period Demand Price UNIT 1 Period 1 ND -100 MWh **CPDP** €1.88/MWh Period 1 Period 2 Period 3 Supplier Unit (€) (€) (€) -188.87 -278.77 -649.18 Supplier Unit 1 -66.11 -63.72 -133.44 Supplier Unit 2 UNIT 2 Period -37 MWh ND CPDP €3.60/MWh

		From : Power Station Co Baggot Street				
	Self Billing Invoice To: Single Market Operator 42 Merrion Square Invoice 2 Settlement Type - Initial Invoice Type - Capacity 7654321	PART 1232 Date of Issue: 5/3/07 Due Date: 9/3/07 Capacity Period:2				
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt		
<u></u>	Capacity Payments	- 428.50 -	57.85	- 486.35		
	Total Invoice	- 428.50 -	57.85	- 486.35		
	Settlement Reallocation(s)					
	Amount Due			- 486.35		

aime	All Island Market for Electricity		From : Market Operator 42 Merrion Square			
Invoice To: Supplier Co Baggot Street Invoice 2 Settlement Type - Initial Invoice Type - Capacity 1234567		PART 1232 Date of Issue: 5/3/07 Due Date: 9/3/07 Capacity Period:2				
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt		
	pacity Charge	1,116.82	150.77	1,267.59		
Tot	al Invoice	1,116.82	150.77	1,267.59		
	al Invoice ttlement Reallocation(s)	1,116.82	150.77	1,267.59		

A. BID SECTION

B. SETTLEMENT SECTION

1. Introduction

2. Energy Payments and Charges

3. Capacity Payments and Charges

4. Market Operator Charges

5. Payment Timeline

aime	All Island Market for Electricity	From : Market Operator 42 Merrion Square				
Invoice To: Supplier Co Baggot Street Invoice 12 Settlement Type - Initial Invoice Type - Market Operator Charg 1234567		PART 1232 Date of Issue: 23/2/07 Due Date: 1/3/07 Billing Period: 7				
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt		
	iable Market Operator Charge	126.00	17.01	143.01		
Tot	al Invoice	126.00	17.01	143.01		
Set	tlement Reallocation(s)					
Am	ount Due			143.01 T20		

Ä Market Operator Charges recover the costs of operating the SMO.

- Ä The Fixed Market Operator Charge is levied as an annual fee for all Generating Units and all Supplier Units.
 - Ä It is effectively a membership fee.
 - Ä This fee is ignored in this example.
- Ä The Variable Market Operator Charge is a rate per MWh that is fixed annually.
- Ä The Variable Market Operator Charge is prepared weekly and billed only to Supplier Units.

Variable Market Operator Charge = Net Demand x Variable Market Operator Price

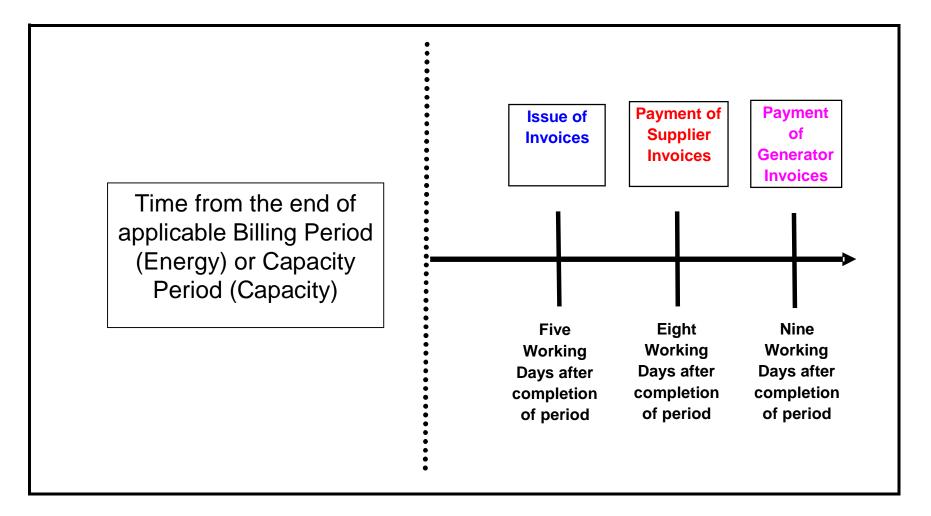
		Perioc	1	Pe	riod 2	Period 3
Supplier Unit		((€)		(€)	(€)
Supplier Unit 1		-30	.00		-42.00	-54.00
Supplier Unit 2		-10	.50	-9.60		-11.10
	Unit 1 Pe		Pe	riod 1		
	ND		-10	00MWh		
	VMOP €0		30/MWh			

		From : Market Operator 42 Merrion Square PART 1232 Date of Issue: 23/2/07 Due Date: 1/3/07 Billing Period: 7			
	Invoice To: Supplier Co Baggot Street Invoice 12 Settlement Type - Initial Invoice Type - Market Operator Charge 1234567				
Charge_ID	Charge_Type	Net Amt	VAT	Gross Amt	
	Variable Market Operator Charge	126.00	17.01	143.01	
	Total Invoice	126.00	17.01	143.01	
	Settlement Reallocation(s)				

A. BID SECTION

B. SETTLEMENT SECTION

1. Introduction


2. Energy Payments and Charges

3. Capacity Payments and Charges

4. Market Operator Charges

5. Payment Timeline

TRADING SITE

Generator Units

Netting Generator Unit

Supplier Unit

- Ä A "Trading Site" is a device for correctly netting energy and capacity payments when there are both generation and load at the same site.
- Ä With generation & load at the same site then the final settlement position will be:
 - Ä Energy payments are based on the NET generation.
 - Ä Constraint payments and uninstructed imbalances are based on the GROSS generation while Imperfection Charge are on GROSS LOAD.
 - Ä Capacity payments are based on the NET generation.
 - Ä Variable Operators Charge on GROSS load.
- Ä The Generator Units are registered by the Market Participant at that Trading Site.
- Ä There can be only one Supplier Unit at a Trading Site:
 - Ä The example on the next slide assumes this is registered to the registered participant for the Trading Site (i.e. A Trading Site Supplier Unit)
 - Ä Alternatively, it could be registered to another participant (an Associated Supplier Unit) in which case the Netting Generator Unit has a zero quantity for the Trading Site participant.
- Ä The Netting Generator Unit is a virtual unit, registered by the SMO on behalf of the Market Participant at that Trading Site.

TRADING SITE

Generator Units

Netting Generator Unit

Supplier Units

- Ä Meter Data and MSQ for the Netting Generator Unit is negative of the lesser of:
 - Ä The absolute value of the total metered values for the Generator Units.
 - Ä The absolute value of the total metered values for the Supplier Units.
- Ä Energy and Capacity Payments are based on Generator Unit MSQ's and the Netting Generator (which is a negative number)
- Ä Energy and Capacity Charges are based on Supplier Unit MSQ's less Netting Generator Unit output (which is a negative number)
- Ä Other settlement terms are still settled on a gross basis.

Generator Unit MW (A)	+100	+50	+40
Supplier Unit MW (B)	-60	-80	-40
Netting Generator Unit MW (C = -Min(A , B))	-60	-50	-40
Generator Unit Energy/Capacity Payment MW (A)	+100	+50	+40
Netting Generator Unit Energy/Capacity Payment MW (C)	-60	-50	-40
Net Energy/Capacity Payment MW (A+ C)	+40	0	0
Supplier Unit Energy/Capacity Charge MW (B – C)	0	-30	0

Market Processes: Bid to Bill March 2007